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The growth of several macromolecular seeds uniformly distributed on the bottom of a protein reactorsi.e.,
a discrete layer ofN crystals embedded within a horizontal layer of liquid with no-slip boundariesd under
microgravity conditions is investigated for different values ofN and for two values of the geometrical aspect
ratio of the container. The fluid dynamics of the growth reactor and the morphologicalsshape-changed evolu-
tion of the crystals are analyzed by means of a recently developed moving boundary method based on
differential equations coming from the protein “surface incorporation kinetics.” The face growth rates are
found to depend on the complex multicellular structure of the convective field and on associated “pluming
phenomena.” This correspondence is indirect evidence of the fact that mass transport in the bulk and surface
attachment kinetics are competitive as rate-limiting steps for growth. Significant adjustments in the roll pattern
take place as time passes. The convective field undergoes an interesting sequence of transitions to different
values of the mode and to different numbers of rising solutal jets. The structure of the velocity field and the
solutal effects, in turn, exhibit sensitivity to the number of interacting crystals if this number is small. In the
opposite case, a certain degree of periodicity can be highlighted for a core zone not affected by edge effects.
The results with no-slip lateral walls are compared with those for periodic boundary conditions to assess the
role played by geometrical constraints in determining edge effects and the wavelength selection process. The
numerical method provides “microscopic” and “morphological” details as well as general rules and trends
about the macroscopic evolutionsi.e., “ensemble behaviors”d of the system.
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I. INTRODUCTION

Proteins are the elementary building units of all living
creatures and essential components for information and en-
ergy processing within living systems.

The crystallization process of these substances has been
the focus of intense investigation for many decades, and re-
cently a tremendous effort has been devoted to the study of
these topics. Progress in various biochemical and biomedical
research and production tasks in fact is still impeded by a
lack of insight into the growth mechanisms of these complex
molecules that are very labile and sensitive to the conditions
under which they are operatedssee the excellent book of
Vekilov and Chernovf1g and McPhersonf2gd. It is worth-
while to point out also how, in addition to its medical and
biotechnological significance, protein crystallization exhibits
a theoretical kinship with the complex of problems that come
under the heading “order out of chaos.” Protein crystalliza-
tion can be seen in fact as a good terrain for testing our
current ability to predict the behavior of complex systems
sfundamental research, nonlinear behaviors, etc.d.

Since the production of protein crystals of adequate size
and desired quality is often the bottleneck of the available
techniques, today the major effort is devoted to a better un-
derstanding of the conditions that may influence their
growth. Such knowledge may support the introduction
of new crystallization techniques and the design of new
reactors.

Since it is expected that growth is driven by the phenom-
ena occurring in a thin zone surrounding the crystalsthe
so-called “depletion zone;” see, e.g.,f3,4gd where the con-
centration of the nutrients is lowered due to solute absorp-
tion, many authors have focused on “what happens close to
the crystal.”

The procedure usually employed in these studies consists
in growing a very limited numbersNd of “seeds” ssee, for
instance, the excellent works of Otáloraet al. f4,5g, Lee and
Chernovf6g, etc.d. In practice, multiple-nucleation events are
obtained in gelfN=Os100dg usually by a counter diffusion
techniquesfor further details about this technique and its
models see, e.g., Refs.f7–11gd; then, the nuclei are grown in
this environment up to a desired sizesthis growth technique
is known to produce “reinforced” crystals that can be easily
handled and can even be glued to rigid substrates, Otáloraet
al. f4gd. At this stage some crystals with large sizesnot
manyd are placed in a newssmalld reactor expressly con-
ceived and equipped for surface analysissin situ, nonintru-
sive monitoring techniquesd. At this stage they are called
“seeds.” Particular care is devoted to avoid further nucleation
phenomenasi.e., the formation of new nucleid that would
spoil interferometry data.

Often gel is not used for this second stage of growth since
it is well known that it can have detrimental effects on the
final quality of the specimens. Usually, in fact, these experi-
ments are carried out taking advantage of microgravity con-
ditions sin order to benefit of the quiescent or quasiquiescent
conditions that are established in this environmentd.

Microgravity has the advantage over gels of being free of
macromolecular interactions that could modify in unex-*Electronic address: marlappa@marscenter.it, marlappa@unina.it
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pected ways the surface kinetics. Unfortunately, however, of-
ten convection arises due to residual gravity disturbances and
the growth process can be associated with the onset of mor-
phological instabilities driven by these convective effects
si.e., shape change of the growing specimensd. The under-
standing of these phenomena is crucial in determining gen-
eralized criteria to obtain well-controlled growthsi.e., final
samples of desired shape and sized.

Along these lines, mathematical and numerical analyses
can be regarded as a necessary, additional tool for gaining
such a knowledge.

Excellent numerical simulations to elucidate the interac-
tion between organic crystal growth and convection due to
solutal buoyancy forces were initially carried out by Linet
al. f12g who used a kinetic-coefficient-based differential sur-
face condition and predictedsin principled possible onset of
surface depressions and/or protuberances in terms of growth
rate surface distributions. An interesting contribution dealing
with the application of “moving boundary” techniques to the
problem of a crystal growing in a supersaturated solution
was provided by Noh, Koh, and Kangf13g, who obtained
numerical solutions through numerically generated orthogo-
nal curvilinear coordinate systems, automatically adjusted to
fit the boundary shape at any instant. Several of the many
modern numerical methods currently used in the representa-
tion of discontinuitiessboundaries, fronts and interfacesd
moving with a fluid, however, are capable to undertake a
fixed-grid solution without resorting to mathematical ma-
nipulations and transformationssfor a very comprehensive
discussion dealing with a historical perspective, the genesis,
and the evolution of these methods see, e.g., Rider and Kothe
f14g, Kim, Goldenfeld, and Dantzigf15g and references
thereind. These numerical strategies have enjoyed wide-
spread use for the simulation of typical problems dealing
with gas/liquid or liquid/liquid systemsswhere the surface
tension effects play a “critical role” in determining the shape
of the fluid/fluid interface and/or its motiond as well as with
the case of thermal solidification of melts.

Recently these techniques have been extended to the case
of macromolecular growthsdue to the addition and incorpo-
ration of solute moleculessbuilding blocks or growth unitsd
to the crystal latticed and to the growth of organic “living”
tissues in bioreactorsf16g. For instance, they were used by
Lappaf17g to “track” the evolution of the solid/liquid inter-
face of a single sample surrounded by the nutrient solution,
focusing on the surface kinetics and their sensitivity to many
“local” environmental factors. A quite exhaustive attempt
dealing with the case of two interacting crystals was pro-
vided by Lappaf18g. The case of protein seeds sharing the
same growth reactor was investigated under the effect of a
residual-g smicrogravity conditionsd. It was shown that the
size and shape of the growing crystals play a “critical role”
in the relative importance of surface effects and in determin-
ing the intensity of convection. Convective effects, in turn,
were found to impact growth rates, macroscopic structures of
precipitates, particle size, and morphology as well as the
relative importance of mass transport in liquid phase and
surface attachment kinetics. Some interesting scaling models
dealing with the importance of convective effects and slow
surface kinetics were also provided by Lee and Chernovf6g

and Otáloraet al. f5g. The simulations of Lappaf18g showed
in detail that this relative importance does not behave as a
“fixed” parameter and that different crystallization conditions
may occur in the protein chamber due to mutual interference
of the growing seeds, complex convective effects, and “finite
size” of the reactor.

In the present paper that preliminary analysis is extended
to the case ofN crystals, i.e., several protein seeds uniformly
distributed on the bottom of a protein reactorsi.e., a discrete
layer of N crystals for different values ofNd. “Ensemble
behaviors” with many specimens, in fact, are also an impor-
tant aspect of the problem. ForN@1, in fact, crystallization
at a macroscopic scale is characterized by the interplay of
different phenomena: transport in liquid phase, convection,
and in particular competition among different crystals.

Due to their geometric complexity, such configurations
have not been studied in great detail. They are still a chal-
lenging task for numerical simulation. The present contribu-
tion appears as the first attempt to analyze thesesfluid-
dynamicd global behaviors focusing on both microphysical
and macrophysical aspects. The analysis is carried out
through application of the kinetic model used by Lappa
f16,17g sable to take into account convective effects, and to
model all those factors dealing with the “local” history of the
crystal shaped. It is briefly described in the next section.

II. MATHEMATICAL MODEL AND NUMERICAL
METHOD

A. OCGVOF method: General properties

This method accounts for the solid mass stored in the
generic computational cell by assigning an appropriate value
of f sphase field variabled to each mesh pointsf=1 crystal,
f=0 feeding solution, and 0,f,1 for an interfacial celld.

In the presence of convection, the flow is governed by the
continuity, Navier-Stokes, and species equations, which in
nondimensional conservative form read

¹ ·V = 0, s1d

]V

]t
= − ¹ p − ¹ · fVV g + Sc¹2V + ScRaS C

Cs0d
− 1D îg

+
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D
ScRasaltS Csalt
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h
V , s2d

wheren is the kinematic viscosity,D is the protein diffusion
coefficient, Sc=y /D, Ra=gbprotCs0dL

3/nD, and Rasalt

=gbsaltCsalts0dL
3/nDsalt sthe Boussinesque approximation is

used to model the buoyancy forces, andbprot andbsalt are the
solutal expansion coefficients related to organic substance
and salt, respectivelyd,

]C

]t
= f− ¹ · sVCd + ¹2Cg if f = 0, s3d

]Csalt

]t
= f− ¹ · sVCsaltd + Dsalt/D¹2Csaltg if f = 0, s4d

whereV and p are the nondimensional velocity and pressure.
The nondimensional form of the equations results from scal-
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ing the lengths by a reference distancesLd, the time byL2/D;
the initial values of the protein and precipitant agentssaltd
areCs0d andCsalts0d, respectively. Note that concentrations are
not posed in nondimensional formsfg cm−3gd. The reference
velocity and pressure areD /L andrSD

2/L2, respectively.
The solid phasescrystald is assumed to be nondeforming

and free of internal stress, while the multiphase regionsre-
gion where phase change occursd is viewed as a porous solid
characterized by an isotropic pseudopermeabilityh by anal-
ogy with the enthalpy methodsssee, e.g., Lappaf16,17gd.

On the surface of the crystalsu¹fuÞ0,0,f,1d, pro-
tein concentration satisfies the kinetic condition that in non-
dimensional form readssn is the direction perpendicular to
the crystal surfaced:

US 1

rP − rCCi/rS
D ]C

]n
U

i

= l̃ssi − 1 −d0d, s5d

wherel̃=lL /D, s=C/S is the degree of supersaturation,S
is the solubilitysits value is a function of the local concen-
tration of the precipitant agentd, rP and rc are the protein
mass density and the total mass density in the crystal,rS is
the total density of the solution,d0 is the width of the super-
saturation range in which no growth occurssdead zoned, and
l is the kinetic coefficient.

The phase field equation reads

]f

]t
= 0, if u ¹ fu = 0,

]f

]t
=

l̃srP − rCC/rSdsC/S− 1 −d0dds

rPdv
,

if u ¹ fu Þ 0, 0, f , 1, s6d

with C satisfying Eq.s5d, whereds is the “reconstructed”
portion of the crystal surface “bounded” by the frontier of the
control volumescomputational celld located astride the crys-
tal surface and dv is the volume of the computational cellsds
is provided by a PLIC techniquef17gd.

The code has been validated through comparison with the
numerical results of Linet al. f12g. The method is no longer
discussed herein. For further details, the validation and the
parallel implementation see Lappaf17g and Lappaf19g, re-
spectively.

B. Geometrical parameters and configuration under
investigation

The growth ofN seeds of lysozymessee Table I for the
properties of this molecule and the operating conditions for
the simulationsd is considered. Lysozyme has become over
the years a very important “paradigm” model protein for fun-
damental research. Usually it is selected as the protein to
crystallize because its solubility curveS=SsCNaCld is per-
fectly known and because of the current experience of or-
ganic crystal growers in producing gel reinforced crystals to
be used as “seeds” for surface studies.

For the sake of simplicitysaim of the present paper is to
elucidate convective and pattern-formation effects rather

than the intrinsic surface-orientation-dependent growth
mechanismsd the initial shape of the specimens is supposed
to be quadratesi.e., a horizontal layer of fluid confined be-
tween two parallel walls with a periodic array of evenly
spaced square bodies in the interiord and the kinetic coeffi-
cient is supposed to be the same for the different sides of the
crystal.

Relevant nondimensional geometrical parameters are the
aspect ratioA=H /L ssee Fig. 1d of the reactor and the pa-
rameterk=, /d sratio of the crystals size and related dis-
tanced.

Following typical experimental procedures the seeds are
supposed to be fixedse.g., by glued to the bottom of the
reactorssee Fig. 1d.

The present analysis focuses on the case of seeds located
one away from the other at a distance of the order of the
crystal sizefk=Os1dg, changing their number and consider-
ing two different values of the aspect ratio of the reactor
sA=3 andA=6d.

The conditionk=Os1d is investigated sincesowing to the
small size of the reactors used for morphological analysesd
this is the typical situation occurring in this kind of studies.
The number of seeds is changed in order to analyze the sen-
sitivity of the overall system to this parameter. The dimen-

TABLE I. Properties and operating conditions.

Dlys fcm2 s−1g 10−6

DNaCl fcm2 s−1g 10−5

n fcm2 s−1g 8.63310−3

rc fg cm−3g 1.2

blys fg−1 cm3g 0.3

bNaCl fg−1 cm3g 0.6

rP fmg ml−1g 820

l fÅ s−1g >10

d0 f2g 2

T f°Cg 18

Clyss0d fg cm−3g 6310−2

CNaCls0d fg cm−3g 2.5310−2

, fmmg 1

L fmmg 10

PH 4.5

FIG. 1. Sketch of the growth reactor with the protein seeds and
of the relative direction of the residualg.
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sion of the reactor alongx is doubledsA=3→A=6, retaining
the same extension alongyd in order to investigate the pos-
sible existence of regularities associated with transport pro-
cess in a system with a large number of seeds—i.e., to dis-
cern if the domain can be split into a “central area” where the
pattern is almost periodic and sides, close to the lateral no-
slip walls sSW’sd, strongly affected by edge effects. Finally,
the case with periodic lateral boundary conditionssPBC’sd is
considered to study the “idealistic” behavior in the case of
infinite crystals at fixed values of the space parameterk.

Growth is obtained from a supersaturated solution with
ss0d>6. With regard to this choice of initial conditions it
should be pointed out that usually the protein concentration
in the nutrient liquid is selected by organic crystal growers in
order to favor growth and prevent new crystal formation
snucleationd. For this reason the range of protein concentra-
tion and of supersaturation investigated is very limited. If
protein concentration is too low, the seeds do not grow due to
the “dead zone”fd0 in Eq. s1dg; if it is too high, new nuclei
are formed and this phenomenon behaves as a disturbance
for the growth and the study of the “seeds.” For the case
under investigationss0d>6 corresponds to a suitable and re-
alistic condition.

The frontier of the domain is supposed to be impermeable
to protein and saltstherefore the salt concentration is con-
stantd. According to the grid refinement studysnot shown for
the sake of brevityd a mesh 3003100 is used for the case
A=3 and 6003100 for the caseA=6.

III. RESULTS

As seeds grow from the solution, each crystal depletes the
concentration of the growth units that are incorporated into
the crystal lattice producing a concentration-depleted zone
around it. In this region, the solute concentration changes
continuously from the concentration at the crystal face to the
concentration in the bulk of the solution. The concentration
profile in the concentration-depleted zone varies with time as
the crystal grows and is controlled by the balance between
the flow of growth units towards the crystal face and the rate
of incorporation of these growth units into the crystal lattice.
The kinetics of incorporation at the crystal surface are linked
to the bond configuration of the crystallographic structure as
discussed in Sec. II Asfor the present case of isotropic
growth, the kinetics of incorporation are simply linked to the
value of the kinetic coefficient and to the supersaturation
leveld, while the flow towards the crystal face is highly de-
pendent on the symmetry of the concentration pattern, which
turns out to be crucial for the overall crystal growth process.

With regard to the latter aspect it is important to highlight
how convection plays a critical role in determining the de-
formation of the concentration distribution around the grow-
ing crystals. The formation of halos due to the lowered solute
concentration around growing seeds, in fact, has the effect of
producing density gradients in these areas. These in turnsun-
der the effects of gravityd result in the onset of convection.

These phenomena occur also during experiments in space.
In fact, the residual gravity estimated on board the space
shuttle and the International Space StationsISSd is not zero,

but typically of the order of 10−5 of Earth gravity. Therefore
these effects have to be evaluated under microgravity condi-
tions, in order to properly prepare and interpret the results of
crystal growth experiments in space.

In addition to these arguments one must keep in mind that
there is an effect related to the fact that, when many crystals
grow in the same reactor, competition for growth occurs due
to superposition and intersection of the related “depletion
zones.” The coupling between convective “pluming phenom-
ena” and the overlapping of the depletion zones makes the
concentration pattern very complex. It is worthwhile to high-
light how in the presence of many growing crystals, the pro-
cess is mainly controlled by these aspects.

A. Structure of the convective field

1. Lateral no-slip walls

First the attention is focused on the case of lateral no-slip
walls sconstant aspect ratioA=3 and two possible values of
k, and constantk and two different values of the aspect
ratio—i.e.,A=3 andA=6d, then the aforementioned condi-
tion with periodic side boundary conditions is taken into ac-
count.

For the caseA=3, g=10−4 g0, a flow field is driven by the
density gradient around the growing crystalsssee Figs. 2 and
3d.

At the beginningfFigs. 2sad and 3sadg each crystal is char-
acterized by its own rising solutal plume. In this early phase
of the growth process—i.e., when depletion zones are
separated—the growth dynamics of the different seeds can
be regarded as independent. Two convective cells are gener-
ated around each crystal. After this initial transient behavior,
however, the depletion zones for two growing consecutive
seeds intersect and overlapfFigs. 2sbd and 3sbdg. At this
stage mutual interference occurs. Crystals, in fact, absorb
protein from “common” regions.

The delicate evolutionary equilibrium among crystal
growth sabsorption processd, solution depletion phenomena,
and competition among several seeds is coupled to signifi-
cant and intriguing adjustments in the roll pattern inside the
reactor.

A very complex multicellular structure is created above
the interacting crystals. This convective field undergoes in-
teresting subsequent transitions to different regimes as time
passes. It is also worthwhile to stress how the major stages of
this spatiotemporal evolution change according to the value
of N sN=5, k=0.24 in Fig. 2 andN=6, k=0.29 in Fig. 3d.

For the caseN=5, at the beginning the mode of the mul-
ticellular field ism=10 fFig. 2sadg and five rising convective
jets occur above the seedsshereafter the crystals will be re-
ferred to as crystali with i =1→N, respectively, starting
from the left side of the reactord.

After 1.383105 fsg fsee Fig. 2sbdg, the solutal plumes
originated from crystals 1 and 2 merge giving rise to a single
plume located atx=H /4. The same behavior holds for the
seeds 4 and 5 since the system exhibits mirror symmetry
with respect to the midsectionx=H /2. For this reason the
depleted lighter fluid is transported upwards by three solutal
rising jets only. They are located approximately atx=H /4,
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x=H /2, andx=3H /4, respectivelysinstead of the five so-
lutal plumes that characterize the system behavior in the
early phase located atx= iH /6, i =1→5d. Correspondingly
the initial number of rolls is reduced from 10 to 6. Two
convective cells still exist above the central seedsi =3d
whereas only two vortices characterize the right and left
halves of the reactor with the core located approximately
above the seeds 1,2 and 4,5, respectively. As time passes new
regimes evolve which exhibit different number of rolls; the
mode decreases tom=4 ft>53105 fsg, Fig. 2sddg and fi-
nally to m=2 ft.53105 fsg, Fig. 2sedg with only one vortex
for each half of the reactor. The resulting two final convec-
tive cells have symmetric form, but rotate in the opposite
direction; i.e., the flow issapproximatelyd symmetric by re-
flection about the midplanex=H /2.

For the caseN=6 the roll-pattern formation and evolution
are quite different. At the beginning the mode of the multi-
cellular convective field ism=12 fFig. 3sadg and six rising
plumes appear above the seedssi =1→6d. For t=8.3
3104 fsg fsee Fig. 3sbdg, a large depletion zone surrounding
all the crystals is formed and the mode is decreased tom
=8; for t=1.353105 fsg fFig. 3scdg the depleted lighter fluid
is transported upwards by two solutal rising jets only and the
m=8 mode is taken over by a new regime withm=4. The
surviving solutal plumes are located approximately atx
=H /4 andx=3H /4, respectively, whereas the onset of plum-
ing phenomena atx=H /2 is prevented. ForN=5 around the
midsectionsx=H /2d the fluid is carried upwards, but forN
=6 the opposite situation occurs. Fort.1.353105 fsg fFigs.

FIG. 2. Snapshots of growing crystalssSW, A=3, N=5d, con-
centration distribution, and velocity field under microgravity condi-
tions sg=10−4 g0d: sad t=1.383104 fsg, sbd t=1.383105 fsg, scd t
=3.593105 fsg, sdd t=4.973105 fsg, sed t=7.183105 fsg slevel 1
→2.8310−2 fg cm−3g, level 50→6310−2 fg cm−3g, Dc=6.4
310−4 fg cm−3gd.

FIG. 3. Snapshots of growing crystalssSW, A=3, N=6d, con-
centration distribution, and velocity field under microgravity condi-
tions sg=10−4 g0d: sad t=1.03104 fsg, sbd t=8.33104 fsg, scd t
=1.353105 fsg, sdd t=2.0753105 fsg, sed t=8.33105 fsg slevel 1
→2.8310−2 fg cm−3g, level 50→6310−2 fg cm−3g, Dc=6.4
310−4 fg cm−3gd.
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3sdd and 3sedg the structure with four vortex cells seems to be
quite stable without further transitions.

It is worthwhile to underline how the differences between
the casesN=5 andN=6 could be used to explain in principle
the scarce reproducibility that seems to characterize this kind
of experimentsssee also Ramachandranet al. f20gd.

On the other side of the coin, the computations carried out
increasing the extension of the protein reactor alongx pro-
vide additional information about the effect of geometrical
parameters, in particular with regard to possible existence of
a “core zone.”

Along these lines, Fig. 4sad shows that for the caseA=6,
N=10 at the beginning each crystal is characterized by its
own rising solutal plume with the exception of the crystals
located at the extremities. After a transient time four solutal
jets are created above the seedsfFig. 4scd and the mode is
m=8. This situation seems to be quite stablefsee Fig. 4sddg.

As expected, with the exception of the two crystals at the
edges, an interesting spatial periodic behavior arises alongx
in this case. The seeds seem to “work” in groups of two.
Rising solutal jets are created above the coupless2,3d s4,5d
s6,7d s8,9d, and descending jets occur above the coupless3,4d
s5,6d s7,8d. Therefore a certain degree of periodicity in space
can be highlighted with a central zone affected by a some-
what “repetitive” behavior.

This trend is confirmed by the simulations carried out for
A=6 and N=12 snot shownd. Accordingly, some general
rules can be introduced for the case with no-slip lateral walls.
If the aspect ratio is sufficiently large andk=Os1d, in fact
the final mode can be roughly computed asm=sN−2d and
the number of rising solutal jets assN−2d /2.

Hereafter, the results pertaining to the PBC case are elu-
cidated.

2. Periodic lateral boundary conditions

These simulations, specially conceived to allow for lateral
freedom, on the one hand give indirect evidence of the fact

that the sidewalls can still have a significant influence on the
resulting velocity and solutal fields even ifA@1 se.g., A
=6; see the last part of this section for further detailsd; on the
other hand, they provide a variety of interesting insights into
the “extreme” behavior, which the system tends to, when the
number of interacting crystals is increased to infinitesN
→`d at fixed values of the interspace parameterk si.e., in-
finite layer of liquid with evenly spaced seeds in the interiord.

As a first step, comparison between the computations for
k=0.24 andN=5 sPBC, shown in Fig. 5d and those forA
=3 sSWd and same value ofk sFig. 2d highlights that in the
absence of side solid constraints, the delicate evolutionary
equilibrium among the rolls is featured by a different time
history.

The initial multicellular pattern with a clockwise and a
counterclockwise rotating cell aroundsaboved each seed, in
fact, tends to be more stablescompare, e.g., frames 2sad–2scd
and 5sad–5scdd; this means that, when PBC’s are considered,
the coalescence process of adjacent vortices, observed in the
SW case, is postponed in time. The differences, however, are
not limited to the temporal sequence of transitions to differ-

FIG. 4. Snapshots of growing crystalssSW, A=6, N=10d,
concentration distribution, and velocity field under microgravity
conditions sg=10−4 g0d: sad t=4.63104 fsg, sbd t=2.33105 fsg,
scd t=4.833105 fsg, sdd t=8.053105 fsg slevel 1→2.8310−2

fg cm−3g, level 50→6310−2 fg cm−3g, Dc=6.4310−4 fg cm−3gd.

FIG. 5. Snapshots of growing crystalssPBC, k=0.24, N=5d,
concentration distribution, and velocity field under microgravity
conditionssg=10−4g0d: sad t=1.383104 fsg, sbd t=1.383105 fsg,
scd t=3.593105 fsg, sdd t=4.973105 fsg, sed t=7.183105 fsg
slevel 1→2.8310−2 fg cm−3g, level 50→6310−2 fg cm−3g, Dc
=6.4310−4 fg cm−3gd.
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ent regimes. The roll-pattern formation and evolution lead to
a final state with four major rollsfFig. 5sed; they are two in
the SW case; see Fig. 2sedg.

In the light of these arguments, the absence of lateral solid
constraints can be thought of as altering the mode selection
process and the pattern symmetries. This result is not unex-
pectedssee, e.g., the theoretical arguments in the next sec-
tiond. For an even more deep perspective into this topic,
however, it is necessary to stress that the periodic domain
lengthsHpd used for the simulations should be regarded as an
additional sensitive parameter for such selection mecha-
nisms.

Special care must be devoted to this aspect for obtaining a
periodic-length-independent solution. As previously ex-
plained, the rolls adjustment process occurs by coalescence
of adjacent cells and possible ensuing expansion and con-
traction of the resulting vortex. However, when PBC’s are
employed, the pattern is constrained to be periodic over the
chosenHp; i.e., the ratio of the periodic width to the wave-
length is forced to be an integer number.

If the most dangerousshereafter referred to as “natural”d
disturbances involve concentration and velocity fields with a
periodic extent that is larger than the chosenHp si.e., they
have a wavelength that is not commensurable toHpd, the
system will select disturbances that are not natural; i.e., a not
suitable periodic length may force the system to select a
small wavelength and therefore to select a different symme-
try of the disturbancesse.g., an even mode instead of an odd
moded.

Additional simulations carried out with a doubled peri-
odic horizontal width in order to remove the restriction lim-
iting the possible disturbancessby allowing the convection
rolls to continuously coalesce, expand, or compress over a
larger distance; see Fig. 6d show, in fact, that further adjust-
ment occurs when the allowed degree of freedom along the

horizontal direction is increased—i.e., a larger wavelength is
selected; fork=0.24 andN=10, the final multicellular state
involves six counterotating vortices and three ascending
plumes.

At this stage, it is worthwhile to shed some light on the
physical mechanisms by whichm is selected.

Discrete wave numbers of disturbances are selected out of
the full spectrum of disturbances because the multicellular
structure is closed in a special zone geometry. As anticipated,
the selection rule is given by the constraint that the wave-
length must be an aliquot of the periodic horizontal extent;
however, the geometrical constraints represented by the pres-
ence of top and bottom boundaries also play a role is such
mechanisms.

The simulations in Figs. 5 and 6 show that the final size of
the crystals alongy is about twice the initial seed size “,.”
Therefore the space occupied by the rolls alongy is about
sL−2,d; since the size of each convective cell alongx tends
to be approximately equal to its extension alongy, the m
rolls cover a distancemsL−2,d. Obviously, such a distance
must be equal to the periodic width, and since the periodic
horizontal extension can be also computed asNs,+dd, this
leads to

msL − 2,d = Ns, + dd, s7ad

which, taking into account, /d=0.24 sd>4,d and ,=L /10
ssee Table Id, reads

8m= 5N. s7bd

Equationss7d provide an analytical relationship between the
mode and the number of crystalssevenly spaced over the
periodic lengthd supported by precise theoretical arguments.
For increasing values ofN, Eq. s7bd gives

N = 5→ m> 3, s8ad

N = 10→ m> 6, s8bd

N = 20→ m> 12. s8cd

Equations8ad does not agree with the numerical resultssm
=4 in Figs. 5d, but the agreement holds forN=10 as shown
in Figs. 6. This provessas speculated in the foregoing dis-
cussiond that the results in Fig. 5 do not represent a periodic-
length-independent solution. Additional theoretical relevance
to these aspects can be simply obtained by further doubling
the periodic width alongx. The mode number for the corre-
sponding results in Fig. 7 ism=12 as predicted by Eq.s8cd.
This finally demonstrates that convergence in the distur-
bances selection mechanism is achieved for sufficiently large
horizontal periodic distancesfor the considered case it is 2Hp

5

whereHp
5 is the periodic length used for the simulation in

Fig. 5d.

FIG. 6. Snapshots of growing crystalssPBC, k=0.24, N=10d,
concentration distribution, and velocity field under microgravity
conditions sg=10−4 g0d: sad t=4.63104 fsg, sbd t=2.33105 fsg,
scd t=4.833105 fsg, sdd t=8.053105 fsg slevel 1→2.8
310−2 fg cm−3g, level 50→6310−2 fg cm−3g, Dc=6.4
310−4 fg cm−3gd.

FIG. 7. sPBC,k=0.24,N=20d, crystal distribution and velocity
field under microgravity conditionssg=10−4 g0d: t=8.053105 fsg.
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In practice, numerical simulations of the conditions corre-
sponding to Eq.s8ad are not relevant since it is obvious that
odd modesse.g., m=3d cannot be captured by numerical
simulations with PBC’sswith such conditions there must be
the same number of clockwise- and counterclockwise-
oriented vortex cellsd. The number of rolls in a PBC system
with a moderate extension that does not match a multiple of
the natural wavelength of the instability is not “physical.”
The convective rolls are more regular and their number
scales according to Eq.s7bd when the width is closer to a
multiple of the natural wavelengthsFigs. 6 and 7d.

Among other things, as anticipated, when compared to the
corresponding case with solid side walls, these results also
elucidatefcompare Figs. 4sdd and 6sddg that the aforemen-
tioned existence, for sufficiently large but “finite” values of
the aspect ratio, of a core zone with periodic convection and
very small wavelength must still be regarded as an effect of
the lateral geometrical constraints.

B. Comparison with the classical Rayleigh-Bènard system:
Analogies and differences

It is noteworthy how, from a fluid-dynamic point of view,
the problem under investigation exhibits quite an interesting
theoretical kinship with the Rayleigh-BènardsRBd system in
which convection is induced in a horizontal fluid layer by
uniform heating from below. Therefore, it is opportune to
open a short discussion about the related analogies and dif-
ferences. Such a critical comparison can be regarded as an
additional theoretical artifice by which additional insights
into the physics and the results described in the earlier sec-
tion can be obtained.

Rayleigh–Bènard convection is a canonical example of a
pattern-forming system. A fascinating question is raised by
the pattern selection process upon which a convection layer
evolves through time to a final state. Wave number selection
has been well studied with many different mechanisms now
well characterized.

Most of the initial studies considered infinite systems—
i.e., the stability of the quiescent state of nonconfined fluid
layers heated from below. It was found that such layers un-
dergo instability to couples of counterotating convective rolls
with aspect ratiosratio of the couple width to the depth of the
layerd Ac>2 ssee, e.g., Drazin and Reidf21gd.

Currently, however, it is well known that if systems con-
fined laterally by rigid sidewalls are considered, even in con-
tainers of large horizontal dimensions, the lateral walls can
have a significant influence on the flow pattern that develops
when the Rayleigh number exceeds its critical value. Thus
results for the corresponding infinite layer cannot, in general,
be used to make predictions about either the detailed struc-
ture or the stability of the roll pattern in practical situations.

It has been clearly illustrated by many investigators, in
fact, that there are several modes of the most dangerous per-
turbation that replace each other when the aspect ratioA
sratio of the width and of the height of the finite layerd is
varied ssee, e.g., Gelfgatf22gd. Within this context it should
also be mentioned that the increase of the aspect ratioA
generally results in the increase of the number of two-

dimensional rolls within the finite-size rectangular container.
This is in agreement with the present SW results.

Several studies have also elucidated that in large convec-
tion layersswhere the lateral extent is much larger than the
depthd for fixed values ofA and Rayleigh numbers in the
range Ra=Rà+Os2/Ad where Rà is the critical Rayleigh
number for the corresponding infinite layer, there exists a
class of finite-amplitude steady-state two-dimensional
“phase-winding” solutions that correspond physically to the
possibility of an adjustment in the number of rolls in the
containersby coalescence mechanisms similar from a quali-
tative point of view to those described in the earlier para-
graphd as the local value of Rayleigh number is variedf23g.

It is also knownf24g that in RB periodic convection lay-
ers the wavelength of convection rolls also changes in other
simpler situations where the mode selection process appears
to be governed by a two-dimensional process involving par-
allel convection rolls undergoing a wave number adjustment
by a simple roll expansionsthe so-called “roll relaxation” by
which the convection rolls increase in wavelength to values
larger than the value at thresholdd. Evidence of such a two-
dimensional relaxation mechanism has been found in both
experiments and numerics.

In light of all these arguments, the Rayleigh-Bènard prob-
lem has, therefore, solid theoretical bases; several experi-
mental and numerical works have been performed in order to
confirm the theoretical assumptions. Nonlinear effects and
geometrical constraints are all essential ingredients of this
type of flow. According to the aforementioned “analogy,”
these features may provide a somewhat relevant theoretical
background to explain the trends observed for the present
case of a liquid layer with crystals on the bottom; among
them are the observed change in wave number as a function
of the aspect ratio when SW conditions are considered, the
roll-adjustment process, and the observed notable differences
between the SW and PBC cases.

Despite the macroscopic qualitative similarities, however,
the dynamics and mechanisms underlying the evolution of
the present system are quite different.

In the case of uniformly heated layers the driving force
for the onset of convection is the lighter fluid on the bottom
of the container, this “force” being replaced by the presence
of a discrete distribution of sinks of solute for the case of a
discrete layer of growing macromolecular crystalssthe incor-
poration of protein is the source of lighter fluid at the crystals
surfaced. However, there is no doubt that the geometries that
arise in protein crystal growth applications are more compli-
cated than a simple horizontal layer of convecting fluid. For
such a case the “heating” is not uniform. The depletion zones
do not exhibit uniform behavior. Moreover, during the initial
stages of convection fluid motion also arises along the verti-
cal boundaries of the crystalssthis effect is not present in the
classical Rayleigh-Bènard system; within the framework of
the proposed analogy, it would correspond to a “heating-
from-the-side” thermal conditiond.

For many interacting crystals, the adjustment in the num-
ber of rolls occurs as a consequence of the coalescence
mechanism of the depletion zones that merge as time passes
sthe samples grow and the related “halos” become larger and
overlapd; there is an undeniable effect of the number of crys-
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tals and their distribution. Along these lines, for instance, it is
worth pointing out that an initial nonuniform distribution of
the seeds could deeply affect the initial interaction mode. In
that case in fact the initial interaction would occur between
the seeds with small distance.

Other factors influencing the roll-adjustment process are
the effective driving force acting in the liquidsthe instanta-
neous Rayleigh number decreases in time owing to the pro-
tein absorption processd and the space occupied by the crys-
tals that continuously increasessthis behavior is responsible
for the confinement of the overall convective structure to the
upper part of the reactord. Therefore, for the growth of many
aligned evenly spaced macromolecular seeds, after the early
stagesswith an alternating array of clockwise and counter-
clockwise rotating cells, each couple being located around an
internal seedd, the process by which the instantaneous mode
is selected is very complicatedspossibly involving the effects
of multiple incommensurate selection mechanismsd. There
are at least five independent parameters influencing the
aforementioned evolution of the multicellular structure: i.e.,
the aspect ratio of the protein reactor and/or the type of lat-
eral boundary conditions, the time evolution of the phenom-
enon of absorption of proteinsthis would correspond to a
quasisteady variation of the Rayleigh number for the case of
the layer of fluid heated from belowd, the coalescence pro-
cess of the depletion zones originated from different seeds,
and finally sas previously highlightedd the number of inter-
acting protein crystals and the growth process itselfswhich
leads to a confinement of the roll pattern to the top of the
reactor due to the increasing size of the underlying crystalsd.

In practice, such a system “ideally” tends to the behavior
of the classical infinite RB problem only when PBC condi-
tions are considered and, in particular, only during the very
final stages of convection. For a very reduced crystal inter-
spacingsfinal stage of the growth processd, in fact, the con-
vective rolls do present the most unstable wavelength typical
of the classical Rayleigh-Bènard instability—i.e., the ratio of
the width of a couple of vortices to the depth of the layer>2
fi.e., the aspect ratio of each roll>1 as also discussed in Sec.
III A 2 in the derivation of Eqs.s7dg. This occurs since the
process is no longer affected by changes in the geometry of
the crystals, the rate of change in time of the concentration
gradient between the seeds, and the liquid is so small that the
Rayleigh number can be regarded as constant, and the iso-
contour lines pertaining to the depletion zones are almost
horizontal and uniformsthe individual crystals seem to be-
have as oned.

C. Growth rate distribution and morphological instabilities

The earlier discussion is quite a comprehensive analysis
of the fluid dynamics associated with the growth of the seeds
and may provide interesting information and data for funda-
mental fluid-dynamic research and for investigation of non-
linear behaviors. The present paragraph deals with the
growth process itself.

The cases with an infinite number of seedssPBC’sd and/or
very high aspect ratio are not treated herein since they are
not of practical interest. As previously discussed, in fact, a

very large number of crystals are grown by organic crystal
growers using gellified configurations where convective ef-
fects cannot occur. Therefore, hereafter the analysis is lim-
ited to the SW case andA=3.

Before starting to deal with the “local” detailed analysis
of each crystal according to its position some common fea-
tures can be pointed out.

Figures 2 and 3 show that the “depth” of the face protu-
berances is proportional to the size of the crystalsscompeti-
tion for growth in the intermediate regions and corner effects
are responsible for the tooth shape of the crystalsd. Moreover,
the increase of volume is more pronounced for the crystals at
the extremities of the reactorsi =1 andi =5 for N=5, i =1 and
i =6 for N=6, i =1 andi =10 for N=10d than for the central
crystalssi =3 for N=5, i =3 andi =4 for N=6d. This trend is
confirmed by Fig. 8 where the size of the seeds alongx is
plotted as a function of time. This plot also highlights that
the increase of volume is less pronounced in the caseN=6
with respect toN=5. This apparent “lack” of solid mass of
course follows from the presence of a higher number of crys-
tals simultaneously absorbing protein from the liquid phase
in the caseN=6 si.e., for a fixed initial amount of protein
available in liquid phase, the final size of the crystals de-
creases as their number increasesd.

Possible explanations of the above trends can be outlined
on the basis of the local growth rate distributions plotted in
Figs. 9 and 10.

In agreement with previous resultsf16,17g these figures
show that corners and edges of the crystals are more readily
supplied with solute than the center of sidessthis is respon-
sible for the morphological instability and the presence of a
macroscopic depression around the center of the faces shown
in Figs. 2 and 3d.

As previously discussed, incorporation of the solute into
the crystal causes a local depletion in concentration and a

FIG. 8. Average sizesalong xd of the growing seeds versus time
sSW, A=3d.
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solutal concentration gradient to form between the bulk so-
lution and the growth interface. As expected, the growth rate
is always lower at the center than at the corners where the

convective flowssand the associated shear stressesd are the
strongest, and hence, the interfacial concentration gradients
the steepest.

FIG. 9. Snapshots of growth rate distribution, SW,A=3, N=5:
sad t=1.383104 fsg, sbd t=1.383105 fsg, scd t=3.593105 fsg, sdd
t=4.973105 fsg, sed t=7.183105 fsg.

FIG. 10. Snapshots of growth rate distribution, SW,A=3, N
=6: sad t=1.03104 fsg, sbd t=8.33104 fsg, scd t=1.353105 fsg,
sdd t=2.0753105 fsg, sed t=8.33105 fsg.
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Figures 9 and 10 also allow to point out that the difference
in gradient steepnesssi.e., local growth rated between the
face corner and face center increases as time passes; this
explains why the “depth” of the face depressions is propor-
tional to the volume of the samples. Moreover, the convec-
tion effects tend to increase the local growth rates for the
crystals at the extremities. This trend finally provides a jus-
tification for the behaviors shown in Fig. 8.

Despite the macroscopic analogies and similarities
pointed out above, however, each crystal exhibits different
morphological evolution and different growth history accord-
ing to its position within the reactor and according to the
value ofN.

For instance, in the caseN=5 the final “ridge” sslope of
the upper sided of the crystals withi Þ3 is inclined with
respect to the direction of the residualg fon the contrary for
i =3 the ridge is almost flat and horizontal, Fig. 2sedg. For i
=1 andi =5 the ridge is inclined inwardly, and vice versa for
i =2 andi =4 it is inclined outwardly. For the caseN=6, the
ridge is inclined inwardly fori =1 andi =6 and outwardly for
i =2,3,4,5fFig. 3sedg. “Edge effects” are also very evident
in Fig. 4sdd.

In practice the characters of the final samples change de-
pending on the local fluid-dynamic conditions under which
they are operated. In addition to the effect associated with
the corners more readily supplied with solute, there is an
effect due to the local convective pattern around the crystal.
The cross-comparison frame by frame of Figs. 2 and 9 for
the caseN=5 s3 and 10 for the caseN=6d in particular
elucidates that the convection effect results in higher local
growth rates near the surface where the flow is directed
downwards and lower local growth rates near the surface
where the flow is carried upwardssas depicted in detail in
Sec. III A 1, if the number of seeds is not sufficiently large
these fluid-dynamic conditions in turn change in time and
exhibit a different spatial evolution according to the number
of interacting crystals simultaneously growing in the protein
reactord.

It is very important to point out how the correspondence
elucidated above between surface growth rates and roll pat-
tern evolution is an indirect evidence of the fact that for the
case under investigation, mass transport in the bulk and sur-
face attachment kinetics are competitive as rate-limiting
steps for growthsin the case of phenomena strictly governed
by the kinetic barrier in fact the effect of convection on the
overall growth process is almost negligibled.

IV. CONCLUSIONS

The different complex scenarios that arise in a growth
reactorsaccommodating many protein seedsd in terms of de-
tailed structure of the convective field and distribution of the
local growth rates have been investigated for the first time in
the framework of a recently introduced volume tracking
method. This multiphase methodology has been used to ad-
dress the geometric complexity introduced by the internal
seeds and their growth process.

The face growth rates have been found to depend on the
time-dependent multicellular structure of the velocity field
and to be nonuniform across the crystal facesgrowth rate
always lower at the center than at the cornerd.

The prominent features of this evolution exhibit large sen-
sitivity on the number of crystals simultaneously growing in
the protein reactor if this number is not sufficiently large
sthis case corresponds to typical experiments carried out by
organic crystal growers interested in studying morphological
and kinetic detailsd. It, in fact, plays a crucial role in deter-
mining the mode of the convective fieldsi.e., the number of
vortex cellsd, the number and positions of rising solutal jets,
and the related time evolution.

On the contrary some general rules can be introduced to
characterize the system behavior if the number of seeds and
the aspect ratio are large. The direction of the jets in this case
in fact results modulated in space with an evenly spaced
alternation of rising and descending jets. This behavior holds
for a “central zone” of the reactor not affected by edge ef-
fects. Additional simulations carried out using periodic
boundary conditions show, however, that the existence of the
aforementioned core region is made possible by the effect
exerted by the no-slip side walls that lead to small values of
the internal wavelength. In the case of periodic domain, in
fact, the delicate evolutionary equilibrium among the rolls is
featured by a different time history and the final wavelength
is larger. The simulations also show that the relaxation of
convection rolls in the periodic layer depends on the length
of the computational domain. Hence, the choice of this width
is a very delicate aspect of the simulation strategy when try-
ing to capture the behavior of a system with infinite extent.

The results are heretofore unseen and elucidate how pro-
tein seeds can exhibit different shape evolution and different
growth history according to the position within the reactor—
i.e., according to the “local” fluid-dynamic conditions.

The morphological evolution of the seeds has proven to
be strictly coupled to the sequence of transitions that charac-
terize the fluid motion. The growth of the crystals in turn
influences the stages of evolution of the velocity field being
responsible for the confinement of the overall convective
structure to the upper part of the reactor. Possible theoretical
kinship with the case of the Marangoni-Bènard problem has
been discussed, pointing out analogies and differences. It is
not possible to predicta priori the mode that will appear
under the assigned conditions through analogy with the ca-
nonical Rayleigh-Bènard problem because the present phe-
nomena are influenced by many parameters, incommensurate
wavelength selection mechanisms, and the “history” of the
flow.

This study represents a firstsand quite exhaustived attempt
to discern the cause and effect relationships underlying the
complexity of growth carried out in the presence of many
interacting crystals. Determining the related growth laws is
central for discerning howsfluid-dynamicd environment con-
ditions affect macromolecular growth. The mutual interac-
tion between the onset of morphological instabilitiessdepres-
sions and/or protuberances in the shape of the crystald

DISCRETE LAYERS OF INTERACTING GROWING… PHYSICAL REVIEW E 71, 031904s2005d

031904-11



occurring in “growing” solid walls and the fluid motion
smulticellular structure of the flow, solutal jets, shear stress
distribution, etc.d provides rich information to be used in the
framework of macromolecular crystallization.

The present work introduces a common source made
available for fluid-dynamic researcherssthe paper provides
interesting information about the mechanics of thefluid mo-
tion per seand the dynamics of an intriguing and still unex-
plored pattern forming dynamical systemd and for organic

crystal growerssthe paper elucidates the morphological evo-
lution of the crystalsd.

ACKNOWLEDGMENTS

This work has been supported by ASIsItalian
Space Agencyd and ESA sEuropean Space Agencyd. For
additional material, color figures and animations see
http://staff.marscenter.it/lappa and http://utenti.lycos.it/
MarcelloLappa.

f1g P. G. Vekilov and A. A. Chernov,The Physics of Protein Crys-
tallization, Solid State Physics, Vol. 57, edited by H. Ehren-
reich and F. SpaepensAcademic Press, Amsterdam, 2002d, pp.
1–147.

f2g A. McPherson, Eur. J. Biochem.189, 1 s1990d.
f3g F. Otálora and J. M. Garcìa-Ruiz, J. Cryst. Growth182, 141

s1997d.
f4g F. Otálora, M. L. Novella, J. A. Gavira, B. R. Thomas, and J.

M. Garcìa-Ruiz, Acta Crystallogr., Sect. D: Biol. Crystallogr.
57, 412 s2001d.

f5g F. Otálora, J. M. Garcìa-Ruiz, L. Carotenuto, D. Castagnolo,
M. L. Novella, and A. A. Chernov, Acta Crystallogr., Sect. D:
Biol. Crystallogr. 58, 1681s2002d.

f6g C. P. Lee and A. A. Chernov, J. Cryst. Growth240, 531
s2002d.

f7g C. Piccolo, M. Lappa, A. Tortora, and L. Carotenuto, Physica
A 314, 636 s2002d.

f8g L. Carotenuto, C. Piccolo, D. Castagnolo, M. Lappa, and J. M.
Garcìa-Ruiz, Acta Crystallogr., Sect. D: Biol. Crystallogr.58,
1628 s2002d.

f9g M. Lappa, C. Piccolo, and L. Carotenuto, J. Cryst. Growth
254, 469 s2003d.

f10g M. Lappa, D. Castagnolo, and L. Carotenuto, Physica A314,
623 s2002d.

f11g M. Lappa and D. Castagnolo, Numer. Heat Transfer, Part B

43, 373 s2003d.
f12g H. Lin, F. Rosenberger, J. I. D. Alexander, and A. Nadarajah,

J. Cryst. Growth151, 153 s1995d.
f13g D. S. Noh, Y. Koh, and I. S. Kang, J. Cryst. Growth183, 427

s1998d.
f14g W. J. Rider and D. B. Kothe, J. Comput. Phys.141, 112

s1998d.
f15g Y. T. Kim, N. Goldenfeld, and J. Dantzig, Phys. Rev. E62,

2471 s2000d.
f16g M. Lappa, J. Theor. Biol.224, 225 s2003d.
f17g M. Lappa, J. Comput. Phys.191, 97 s2003d.
f18g M. Lappa, Phys. Fluids15, 1046s2003d. This article has been

also selected by the American Physical Society for the 15
March 2003 issue of the Virtual Journal of Biological Physics
ResearchsVolume 5, Issue 6d.

f19g M. Lappa, Fluids, Materials and Microgravity: Numerical
Techniques and Insights into the PhysicssElsevier Science,
Oxford, 2004d, pp. 1–523.

f20g N. Ramachandran, Ch. R. Baugher, and R. J. Naumann, Mi-
crogravity Sci. Technol.8, 170 s1995d.

f21g P. G. Drazin and W. H. Reid,Hydrodynamic StabilitysCam-
bridge University Press, Cambridge, UK, 1981d.

f22g A. Yu. Gelfgat, J. Comput. Phys.156, 300 s1999d.
f23g P. G. Daniels, J. Fluid Mech.143, 125 s1984d.
f24g M. R. Paul and I. Catton, Phys. Fluids16, 1262s2004d.

M. LAPPA PHYSICAL REVIEW E 71, 031904s2005d

031904-12


